Zhao, H., et al., Detection and Tracking of Moving Objects at Intersections using a Network of Laser Scanners, IEEE Trans. ITS, vol. 13, no.2, 655-670, 2012.

MONITORING AN INTERSECTION USING A NETWORK OF LASER SCANNERS

H. Zhao, J. Cui, H. Zha, Peking University K. Katabira, X. Shao, R. Shibasaki, University of Tokyo zhaohj@cis.pku.edu.cn

Background (1)

Analyzing and Monitoring the traffic behavior in an intersection

Efficiently and accurately COLLECTING the TRAFFIC DATA in an INTERSECTION

Real-timely DETECTING DANGEOUS SITUATIONS.

Background (2)

- Vision-based methods suffer mainly on the following difficulties
 - Occlusion
 - Computation Cost
 - Illumination Change

e.g. the camera is required to be set on a tall position, monitoring intersection from the above

To solve the problems

- 1. Restrict camera's setting condit
- 2. Target on a simplified situation

e.g. monitor vehicles of limited lanes, do not discriminate moving objects.

Objective

This research propose a novel system for monitoring and collecting detailed traffic data, with easy setting condition, in an environment of complicated traffic behavior, such as intersection, using a network of single-row laser scanner.

and their reliabilities

Object Detection Results

Object Detection Results

Results

Results

Accuracy Analysis

2007.10.13, 10:00-10:20

Detection Results

type	perfect	split	merge	none	total	d.ratio	p.ratio
car	6915	614	7	89	7625	0.988	0.907
bicycle	1571	82	0	24	1677	0.986	0.938
pedes.	799	13	508	130	1450	0.910	0.551
sum.	9285	709	515	243	10752	0.977	0.864

Tracking Results

type	perfect	broken	error	total	t.ratio	p.ratio
car	636	22	17	675	0.975	0.942
bicycle	322	8	21	351	0.940	0.917
pedes.	30	2	5	37	0.865	0.811
sum.	988	32	43	1063	0.960	0.929

Trajectory Clustering

Trajectory Clustering

Trajectory Clustering

Path Model

Each cross-section is represented by a Gaussian A path is model as a sequence of Gausians

Trajectory Evaluation

Likelihood between a trajectory T_k and a path Γ_j is evaluated

$$\begin{split} P(T_k \mid \Gamma_j) & \propto \prod_{\substack{p=1 \\ L_k}}^{L_k} P(T_k^{\ p} \mid \Gamma_j) \quad // \quad T_k^{\ p} \text{ is a trajectory point} \\ & = \prod_{\substack{p=1 \\ p=1}}^{L_k} P(T_k^{\ p} \mid \Gamma_j^{i'}) \quad // \quad \Gamma_j^{i'} \text{ is the nearest cross-section to } T_k^{\ p} \end{split}$$

$$P(T_{k}^{p} | \Gamma_{j}^{i'}) = \frac{1}{\sqrt{2\pi}\sigma_{j}^{i'}} e^{-d^{2}/2\sigma_{j}^{i'^{2}}}$$

Trajectory Classification

Given a trajectory T_* , the objective is to classify it with in $class = \{\Gamma_1, \Gamma_2, \dots, \Gamma_n, \Gamma_a\}$

as

$$\Gamma_* = \max_{\Gamma} \arg P(\Gamma \mid T_*)$$

where $P(\Gamma_i | T_*) = \frac{1}{\eta} P(T_* | \Gamma_i) P(\Gamma_i)$ $P(\Gamma_a | T_*) = \frac{1}{\eta} P(T_* | \Gamma_a) P(\Gamma_a)$

and

$$P(T_* | \Gamma_a) = \prod_{i=1}^n (P(T_* | \Gamma_i) < \varepsilon_i), \in \{0, 1\}$$

 $P(T_* | \Gamma_a)$ can be either 0 or 1. $P(T_* | \Gamma_a) = 1$ if and only if $\forall i \quad P(T_* | \Gamma_i) < \varepsilon_i$

Path models

Real Abnormal Trajectory

Real Abnormal Trajectory

False Abnormal Trajectory

Thank You!

Contact Info:

赵卉菁(Huijing Zhao) Tel: 010 62757458 Email: zhaohj@cis.pku.edu.cn http://www.cis.pku.edu.cn/faculty/vision/zhaohj/